数据仓库

2017-08-21

13,774
0

数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。

数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。


用途


信息技术与数据智能大环境下,数据仓库在软硬件领域、Internet 和企业内部网解决方案以及数据库方面提供了许多经济高效的计算资源,可以保存极大量的数据供分析使用,且允许使用多种数据访问技术。


开放系统技术使得分析大量数据的成本趋于合理,并且硬件解决方案也更为成熟。在数据仓库应用中主要使用的技术如下:


并行
计算的硬件环境、操作系统环境、 数据库管理系统和所有相关的数据库操作、查询工具和技术、应用程序等各个领域都可以从并行的最新成就中获益。


分区
分区功能使得支持大型表和索引更容易,同时也提高了数据管理和查询性能。


数据压缩
数据压缩功能降低了数据仓库环境中通常需要的用于存储大量数据的磁盘系统的成本,新的数据压缩技术也已经消除了压缩数据对查询性能造成的负面影响。


实现方式

 

数据仓库是一个过程而不是一个项目。
数据仓库系统是一个信息提供平台,他从业务处理系统获得数据,主要以星型模型和雪花模型进行数据组织,并为用户提供各种手段从数据中获取信息和知识。
从功能结构划分,数据仓库系统至少应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data Access)三个关键部分。
企业数据仓库的建设,是以现有企业业务系统和大量业务数据的积累为基础。数据仓库不是静态的概念,只有把信息及时交给需要这些信息的使用者,供他们做出改善其业务经营的决策,信息才能发挥作用,信息才有意义。而把信息加以整理归纳和重组,并及时提供给相应的管理决策人员,是数据仓库的根本任务。因此,从产业界的角度看,数据仓库建设是一个工程,是一个过程。


组成


数据抽取工具
把数据从各种各样的存储方式中
IBM数据仓库解决方案产品组成
拿出来,进行必要的转化、整理,再存放到数据仓库内。对各种不同数据存储方式的访问能力是数据抽取工具的关键,应能生成COBOL程序、MVS作业控制语言(JCL)、UNIX脚本、和SQL语句等,以访问不同的数据。数据转换都包括,删除对决策应用没有意义的数据段;转换到统一的数据名称和定义;计算统计和衍生数据;给缺值数据赋给缺省值;把不同的数据定义方式统一。


数据库
是整个数据仓库环境的核心,是数据存放的地方和提供对数据检索的支持。相对于操纵型数据库来说其突出的特点是对海量数据的支持和快速的检索技术。


元数据
元数据是描述数据仓库内数据的结构和建立方法的数据。可将其按用途的不同分为两类,技术元数据和商业元数据。
技术元数据是数据仓库的设计和管理人员用于开发和日常管理数据仓库使用的数据。包括:数据源信息;数据转换的描述;数据仓库内对象和数据结构的定义;数据清理和数据更新时用的规则;源数据到目的数据的映射;用户访问权限,数据备份历史记录,数据导入历史记录,信息发布历史记录等。


商业元数据从商业业务的角度描述了数据仓库中的数据。包括:业务主题的描述,包含的数据、查询、报表;
元数据为访问数据仓库提供了一个信息目录(informationdirectory),这个目录全面描述了数据仓库中都有什么数据、这些数据怎么得到的、和怎么访问这些数据。是数据仓库运行和维护的中心,数据仓库服务器利用他来存贮和更新数据,用户通过他来了解和访问数据。


数据集市
为了特定的应用目的或应用范围,而从数据仓库中独立出来的一部分数据,也可称为部门数据或主题数据(subjectarea)。在数据仓库的实施过程中往往可以从一个部门的数据集市着手,以后再用几个数据集市组成一个完整的数据仓库。需要注意的就是在实施不同的数据集市时,同一含义的字段定义一定要相容,这样在以后实施数据仓库时才不会造成大麻烦。


国外知名的Garnter关于数据集市产品报告中,位于第一象限的敏捷商业智能产品有QlikView, Tableau和SpotView,都是全内存计算的数据集市产品,在大数据方面对传统商业智能产品巨头形成了挑战。国内BI产品起步较晚,知名的敏捷型商业智能产品有PowerBI, 永洪科技的Z-Suite,SmartBI,FineBI商业智能软件等,其中永洪科技的Z-Data Mart是一款热内存计算的数据集市产品。国内的德昂信息也是一家数据集市产品的系统集成商。


数据仓库管理
安全和特权管理;跟踪数据的更新;数据质量检查;管理和更新元数据;审计和报告数据仓库的使用和状态;删除数据;复制、分割和分发数据;备份和恢复;存储管理。


信息发布系统
把数据仓库中的数据或其他相关的数据发送给不同的地点或用户。基于Web的信息发布系统是对付多用户访问的最有效方法。


访问工具
为用户访问数据仓库提供手段。有数据查询和报表工具;应用开发工具;管理信息系统(EIS)工具;在线分析(OLAP)工具;数据挖掘工具。


建模划分


安卓棋牌游戏 数据仓库的数据建模大致分为四个阶段:


1.业务建模,这部分建模工作,主要包含以下几个部分:
划分整个单位的业务,一般按照业务部门的划分,进行各个部分之间业务工作的界定,理清各业务部门之间的关系。
深入了解各个业务部门的内具体业务流程并将其程序化。
提出修改和改进业务部门工作流程的方法并程序化。
数据建模的范围界定,整个数据仓库项目的目标和阶段划分。


2.领域概念建模,这部分得建模工作,主要包含以下几个部分:
抽取关键业务概念,并将之抽象化。
将业务概念分组,按照业务主线聚合类似的分组概念。
细化分组概念,理清分组概念内的业务流程并抽象化。
理清分组概念之间的关联,形成完整的领域概念模型。


3.逻辑建模,这部分的建模工作,主要包含以下几个部分:
业务概念实体化,并考虑其具体的属性
事件实体化,并考虑其属性内容
安卓棋牌游戏 说明实体化,并考虑其属性内容


4.物理建模,这部分得建模工作,主要包含以下几个部分:
针对特定物理化平台,做出相应的技术调整
针对模型的性能考虑,对特定平台作出相应的调整
针对管理的需要,结合特定的平台,做出相应的调整
生成最后的执行脚本,并完善之。

 

 

 

欢迎来到—科莱特集团官网!如果您有什么疑问,可以点击咨询,我们的在线人员会及时给您答复!

© 2013-2018 北京科莱特信息技术有限公司版权所有 京CIP备15015640号-2

北京科莱特信息技术有限公司版权所有 京CIP备15015640号-2
使用 / 隐私政策条款 

点击QQ咨询

在线咨询 

返回顶部

电玩棋牌 九州棋牌 科乐棋牌 其乐棋牌 卡卡棋牌 棋牌牛牛 徐州棋牌 友趣棋牌 人气棋牌 黄金棋牌